Senin, 30 Juni 2014

Tugas 2 Flowchart Flood Detektor



Flowchart Program  FLOOD DETECTOR



Penjelasan dari program flowchart
1. Mulai
2. Membaca program yang ada pada alamat P1
3. Jika program pada alamat P1 bernilai 0feh maka lampu led hijau akan menyalah jika tidak maka akan ke proses selanjutnya.
4. Jika program pada alamat P1 bernilai 0fch maka lampu led hijau dan kuning akan menyalah jika tidak maka akan ke proses selanjutnya.
5.Jika program pada alamat P1 bernilai   0f8h maka lampu led hijau kuning dan merah akan menyalah jika tidak maka akan ke proses selanjutnya.
6.Jika program pada alamat P1 bernilai   0f0h maka lampu led hijau kuning merah dan buzzer berbunyi akan menyalah jika tidak maka akan ke proses selanjutnya.
7. Jika program pada alamat P1 bernilai   0feh 0fch 0f8h 0f0h  maka semua lampu led mati dan buzzer pun juga mati.
8. kemudian selesai 

Rabu, 11 Juni 2014

Tugas 3 Looping Flowchart Catu Daya Digital

Looping Flowchart Catu Daya Digital

                     Looping Flowchart Catu Daya Digital


Pencatu Daya (Inggris: power supply) adalah sebuah piranti elektronika yang berguna sebagai sumber daya untuk piranti lain, terutama daya listrik. Pada dasarnya pencatu daya bukanlah sebuah alat yang menghasilkan energi listrik saja, namun ada beberapa pencatu daya yang menghasilkan energi mekanik, dan energi yang lain.
Konsep pembuatan catu daya digital ini adalah memanfaatkan DAC (digital to analog converter) yang telah dikuatkan oleh rangkaian penguat sebagai pengendali tegangan outputnya, dan sebagai feed back nya, penulis menggunakan ADC 10 bit mikro ATMega16 untuk mengukur tegangan outputnya secara pasti. Tegangan output catu daya ini bisa di-set mulai 0 volt sampai 32 volt DC dg arus maksimumnya ±1,5 Amper. Diagram bloknya seperti di bawah ini:
Kita bahas satu-satu,
Sebagai pusat kendali adalah ATMega16. Yang berfungsi memberikan output biner 1 dan 0 sebanyak 16 bit secara paralel ke rangkaian DAC. dan melakukan pembacaan tegangan output akhir dg ADC 10 bit internalnya.  Rangkaian sistem minimumnya seperti ini:

Sebagai penguat tegangan, digunakan transistor BC547 dan BC557 yg memiliki gain cukup besar. Besarnya gain (penguatan) tegangan di atas ditentukan oleh R2 dan R3 sebesar (R2+R3)/R3 atau sekitar 7,8 kali tegangan DAC. Untuk pnguat arusnya digunakan rangkaian darlington kombinasi TIP122 dan jengkol 2N3055 sehingga drop tegangan output anggaplah sekitar 0,7×2 volt = 1,4 volt (drop tegangan basis-emitor ). Anggaplah tegangan DAC maksimum adalah 5 volt, maka output penguatnya adalah (5×7,8)-1,4 volt = sekitar 37,6 volt. Tapi hal ini tidak mungkin terjadi karena maksimum tegangn input DC yang digunakan adalah 35 volt. Sehingga maksimum teg. Outputnya  ya  sekitar 35 volt – 1,4 volt = 33,6 volt saja. Dari sini rangkaian di atas sudah cukup bila digunakan untuk mendesain catu daya tegangan output dari 0 s/d 32 volt.
R4 dan R5 di atas berfungsi sebagai rangkaian pembagi tegangan agar tegangan output nya dpat dibaca oleh mikro. Tegangan output catu daya maksimum adlah 32 volt. Bila langsung dibaca oleh mikro.. bisa bisa pin mikronya langsung meleduk (kobong):D, untuk itu diperlukan rangkaian penurun tegangan seperti di atas.  Tegangan drop pada pin “teg.” Adalah Vout x R5/(R4+R5) atau 32 volt x 150k / 1150k atau sekitar 4,17 volt. Nilai inilah yang maksimum terbaca oleh ADC sehingga mikro masih aman.. R4 dan R5 sengaja dibuat besar agar tidak terjadi drop arus pada beban outputnya . Sedangkan R Shunt di atast fungsinya untuk sensitivitas pengukuran arus beban pada output. R shunt dibuat sekecil mungkin agar tidak terjadi drop tegangan dan arus yang terlalu besar pd output. TRUS Bagaimana kita tahu arus pada beban..?  caranya adalah dg mengukur tegangan pada R shunt melalui ADC mikro dan membaginya dengan nilai R shunt.. misal, diketahui R shunt adalah 0.2 ohm dan tegangan pada pin “arus” yang yg terbaca mikro adalah 100 mVolt, maka Arusnya sekitar 100 mVolt/0.2 ohm = 500 mA.
ADC seperti telah di jelaskan di atas. Terdpt dua channel ADC yang digunakan , yaitu channel 0 (PORTA.0) dan channel 1 (PORTA.1). channel 0 untuk mengukur tegangan output sedangkan channel 1 untuk arusnya. ADC yang digunakan 10 bit sehingga resolusi tegangan output yang bisa diukur adalah Vcc/1024, yaitu sekitar 4,88 mV. Nilai tegangan dan arus yang terbaca ini kemudian digunakan sebagai masukan kendali DAC oleh mikro ATMega16, bila tegangan output kurang dari set point, maka mikro harus menambah nilai DAC nya untuk menambah tegangan dan sebaliknya. Sehingga didapatkan tegangan output yang fix sesuai set point yang diatur pada program.
Rangkaian keseluruhan sistem seperti dibawah, , (klik untuk memperbesar)
setelah merancang hardware, saatnya membuat software/algoritma pengendalian tegangan dan arusnya.. secara umum algoritma untuk regulasi tegangan adalah dengan membaca tegangan dari sambungan “teg.” melalui ADC pada PINA.0. tegangan tersebut dikalikan dg suatu konstanta untuk kalibrasi dg tegangan output sebenarnya. Bila tegangan kurang dari tegangan set point-20 mV maka tegangan output DAC ditambah terus, sebaliknya bila tegangan output catu daya lebih dari set point+20 mV maka tegangan output DAC dikurangi. 20 mV adalah toleransi setpoint tegangan output. Untuk regulasi arus pada sumber arus prinsipnya sama, dg membaca tegangan R shunt pada ADC PINA.1 dan membaginya dengan 0.2 ohm (hambatan R shunt/lihat rangkaian di atas). lebih jelasnya, flow chart sistem umumnya seperti ini :